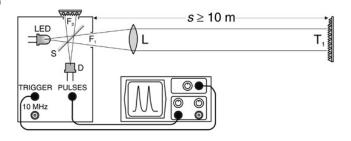
MEDICIÓN CON PULSOS CORTOS DE LUZ

P5.6.2.1

Determinación de la velocidad de la luz en el aire a partir del espacio y el tiempo recorridos por un pulso corto de luz



Determinación de la velocidad de la luz en el aire a partir del espacio y el tiempo recorridos por un pulso corto de luz (P5.6.2.1)

N° de cat.	Descripción	P5 6 2 1
476 50	Unidad para medicion velocidad de la luz (VLM)	1
460 10	Lente en montura f = +200 mm	1
460 335	Banco óptico con perfil normal, 0,5 m	1
460 374	Jinetillo 90/50	2
575 302	Osciloscopio de 30 MHz, digital, PT1265	1
501 02	Cable BNC, 1 m	3
311 02	Regla de metal, l = 1 m	1
300 01	Base de trípode en forma de V, grande	1
300 44	Varilla de soporte, 100 cm, 12 mm Ø	1
301 01	Mordaza múltiple LEYBOLD	1

El instrumento de medición de la velocidad de la luz envía pulsos de luz de unos 20 ns de duración, los cuales se convierten en pulsos de tensión después de recorrer de ida y de vuelta una distancia de medición conocida para su observación en un osciloscopio.

En el experimento P5.6.2.1 se varía una sola vez el camino recorrido por los pulsos de luz y con el osciloscopio se mide la variación del tiempo de recorrido. La velocidad de la luz se calcula como el cociente entre la variación del recorrido y la variación del tiempo de recorrido. Como alternativa se determina el tiempo total de recorrido de los pulsos de luz utilizando un pulso de referencia absoluto. La velocidad de la luz es en este caso el cociente de la distancia recorrida y el tiempo de recorrido. Para calibrar la medición del tiempo se puede representar en el osciloscopio, de manera simultánea con el pulso de medición, una señal de un oscilador controlado con cuarzo. La medición del tiempo es independiente de la base de tiempo del osciloscopio.

Esquema del principio de medición de la velocidad de la luz con pulsos cortos de luz (P5.6.2.1)

MEDICIÓN CON UNA SEÑAL LUMINOSA PERIÓDICA

P5.6.3.1

Determinación de la velocidad de la luz con una señal luminosa periódica en una distancia de medición corta

P5.6.3.2

Determinación de la velocidad de la luz en diferentes medios de propagación

Determinación de la velocidad de la luz en diferentes medios de propagación (P5.6.3.2)

N° de cat.	Descripción	P5 6.3.1	P5 6.3.2
476 301	Emisor y receptor de luz	1	1
575 302	Osciloscopio de 30 MHz, digital, PT1265	1	1
460 08	Lente en montura f = +150 mm	1	1
300 11	Zócalo	2	4
311 02	Regla de metal, l = 1 m	1	1
476 35	Tubo con 2 ventanas terminales		1
476 34	Cuerpo de vidrio acrílico		1*
477 32	Cubeta de vidrio óptico 45 x 12,5 x 52,5 mm		1*
460 25	Mesa de prisma con soporte		1*
671 9720	Etanol - solvente, 1		1*
672 1210	Glicerina, 99%, 250 ml		1*

* se requiere adicionalmente

Medición de la velocidad de la luz en el vidrio acrílico (P5.6.3.2)

En la determinación de la velocidad de la luz con una señal modulada electrónicamente el emisor de luz es un diodo luminoso, cuya intensidad está pulsada con 60 MHz. El receptor es un fotodiodo que convierte la señal de luz en una tensión alterna de 60 MHz. Mediante un cable de conexión se transmite al receptor una señal de referencia sin cronizada a la señal del emisor, que al inicio de una medición es sobrepuesta a la señal receptora. Por último el receptor es desplazado a una distancia Δs , de tal manera que la señal receptora experimenta un desplazamiento de fase en el tiempo de recorrido adicional Δt de la señal de luz.

$$\Delta \varphi = 2\pi \cdot f_1 \cdot \Delta t \quad \text{con } f_1 = 60 \text{ MHz}$$

Alternativamente también se puede colocar un medio óptico denso en el trayecto de los rayos. Aparentemente, el tiempo a medir puede ser aumentado con una treta electrónico: la señal receptora y la señal de referencia son mezcladas cada una con una señal de 59.9 MHz (multiplicada) y recorren un filtro de frecuencia que sólo deja pasar la componente de más baja frecuencia, la frecuencia de la diferencia f_1 – f_2 = 0.1 MHz. El desplazamiento de fase en la mezcla permanece sin cambiar; sin embargo, este desplazamiento corresponde a un tiempo de medición mayor $\Delta t'$ en el factor

$$\frac{f_1}{f_1 - f_2} = 600$$

Los medidores de distancia (distanciómetros) modernos utilizan en sus mediciones un haz de luz láser modulado periódicamente. Estos determinan la fase entre el rayo láser emitido y el rayo reflejado modulado y obtienen, con la frecuencia de modulación conocida, el tiempo transcurrido t de la luz para el camino recorrido hasta el reflector y de retorno. Los distanciómetros calculan después la distancia tomando la velocidad de la luz como parámetro conocido.

En el experimento P5.6.3.1 se mide el aparemte tiempo de recorrido $\Delta t'$ en función de la distancia de medición Δs y se calcula la velocidad de la luz en el aire según

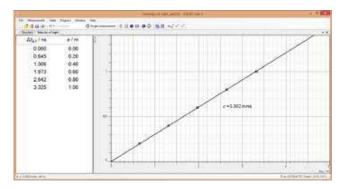
$$c = \frac{\Delta s}{\Delta t'} \cdot \frac{f_1}{f_1 - f_2}$$

En el experimento P5.6.3.2 se determina la velocidad de la luz en diferentes medios de propagación. Como accesorio se dispone de un tubo para llenar con agua, de 1 m de largo con dos ventanas en los extremos, una caja de vidrio de 5 cm de ancho para otros líquidos y un cuerpo de vidrio acrílico de 5 cm de ancho.

MEDICIÓN CON UNA SEÑAL LUMINOSA PERIÓDICA

P5.6.3.3

Determinación de la velocidad de la luz con una señal luminosa periódica en una distancia de medición corta – Medición con sensor de movimiento con láser S y CASSY


P5.6.3.4

Determinación de la velocidad de la luz en diferentes medios de propagación – Medición con sensor de movimiento con láser S y CASSY

Determinación de la velocidad de la luz con una señal luminosa periódica en una distancia de medición corta – Medición con sensor de movimiento con láser S y CASSY (P5.6.3.3)

N° de cat.	Descripción	P5 6.3.3	P5 6 3 4
524 013	Sensor-CASSY 2		
524 220	CASSY Lab 2	1	1
524 073	Sensor de movimiento con láser S	1	1
337 116	Topes amortiguadores, par	1	1
311 02	Regla de metal, l = 1 m	1	
477 32	Cubeta de vidrio óptico 45 x 12,5 x 52,5 mm		1
476 34	Cuerpo de vidrio acrílico		1
	Adicionalmente se requiere: PC con Windows XP/Vista/7/8/10 (x86 o x64)	1	1

Tiempos de tránsito de la luz a diferentes distancias (P5.6.3.3)

En la determinación de la velocidad de la luz con una señal modulada electrónicamente el emisor de luz es un diodo luminoso, cuya intensidad está pulsada con 60 MHz. El receptor es un fotodiodo que convierte la señal de luz en una tensión alterna de 60 MHz. Mediante un cable de conexión se transmite al receptor una señal de referencia sin cronizada a la señal del emisor, que al inicio de una medición es sobrepuesta a la señal receptora. Por último el receptor es desplazado a una distancia Δs , de tal manera que la señal receptora experimenta un desplazamiento de fase en el tiempo de recorrido adicional Δt de la señal de luz.

$$\Delta \varphi = 2\pi \cdot f_1 \cdot \Delta t \quad \text{con } f_1 = 60 \text{ MHz}$$

Alternativamente también se puede colocar un medio óptico denso en el trayecto de los rayos. Aparentemente, el tiempo a medir puede ser aumentado con una treta electrónico: la señal receptora y la señal de referencia son mezcladas cada una con una señal de 59.9 MHz (multiplicada) y recorren un filtro de frecuencia que sólo deja pasar la componente de más baja frecuencia, la frecuencia de la diferencia $f_1 - f_2 = 0.1$ MHz. El desplazamiento de fase en la mezcla permanece sin cambiar; sin embargo, este desplazamiento corresponde a un tiempo de medición mayor $\Delta t'$ en el factor

$$\frac{f_1}{f_1 - f_2} = 600$$

Los medidores de distancia (distanciómetros) modernos utilizan en sus mediciones un haz de luz láser modulado periódicamente. Estos determinan la fase entre el rayo láser emitido y el rayo reflejado modulado y obtienen, con la frecuencia de modulación conocida, el tiempo transcurrido t de la luz para el camino recorrido hasta el reflector y de retorno. Los distanciómetros calculan después la distancia tomando la velocidad de la luz como parámetro conocido.

En el experimento P5.6.3.3 se utiliza el sensor de movimiento Láser S como medidor del tiempo transcurrido, porque puede entregar directamente el tiempo transcurrido t. Se verifica la proporcionalidad entre distancia recorrida y el tiempo transcurrido de la luz y luego se calcula la velocidad de la luz.

En el experimento P 5.6.3.4 se colocan agua y plexiglás de espesor d en la trayectoria del rayo y se mide el aumento del tiempo transcurrido Δt . Con el valor de la velocidad de la luz c en el aire obtenido en el experimento P5.6.3.3 anterior se puede determinar la velocidad de la luz $c_{\rm M}$ en la materia:

$$c_{\rm M} = 2d\left(\frac{2d}{c} + \Delta t\right) = \frac{1}{\frac{1}{c} + \frac{\Delta t}{2d}}$$